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1. A DECISION-MAKING FRAMEWORK 

One of the basic problems in statistics is decision-making under uncertainty. What is the best 

decision to make given incomplete information? This problem arises in many applications, 

including deciding whether a new medication is safe and effective, predicting global climate 

change, and designing a new machine. At Los Alamos, some of the most important decisions that 

must be made with incomplete information are how to integrate data, information, and knowledge 

from the experiments, computational models, past tests, sub-system tests, and the expert judgment 

of subject-matter experts to provide a rigorous, quantitative assessment, with associated 

uncertainties, of the safety, reliability, and performance of the nuclear stockpile. These decisions are 

addressed using science-based stockpile stewardship (SBSS). 

The complexities of big science problems such as SBSS can quickly become overwhelming, 

and without careful attention to the whole picture or purpose, the accomplishments of individual 

scientists can become lost and detached. As some of the key information integrators, we have 

recently gone back to the “beginning” and reformulated our basic understanding of how 

decision-making under uncertainty works. This has led to the understanding that is captured in 

Figure 1. This diagram represents a “time-dependent decision framework.” The type of data 

available and the structure of the analyses in SBSS, as in many other problems, can change 

dramatically over time; therefore, a useful framework, such as the one depicted in Figure 1, must 

be flexible enough to capture these changes. This framework represents a dynamic and recursive 

space where each box has potential to produce new information that can update any other box, 
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resulting in other updates. The goal is that at any slice in time, the best possible information is 

available to inform decision-making. 

The first piece of decision-making is to define the decision objectives: what is it that must be 

understood and decided? This step is frequently overlooked by analysts in the rush to collect, 

model, and analyze data—at least partially because they are well-trained in modeling and data 

analysis, and not so well-trained in the complexities of understanding decision contexts.  

The second piece of decision-making is to try to understand who the “stakeholders” are in the 

decision process and what their perspectives on the problem are. Groups of stakeholders with 

similar ways of thinking about the decision are often called “communities of practice.” For 

example, within SBSS, there are many communities of practice. These include physicists, who 

approach problems by trying to understand the physical processes involved; weapons designers, 

who are more concerned about harnessing the physical processes; engineers, who think about 

problems in terms of interacting components; statisticians, who consider issues of uncertainty 

quantification; computer scientists, who want to understand how complex computer codes work; 

and politicians, who care about the policy implications of the science. Each of these communities 

approaches the problem from a different viewpoint, and each represents its data, information, and 

knowledge in a different way. 

The third piece of decision-making is the problem representation and analysis strategy. 

Before any information is collected, it must be determined how this information will be analyzed 

and integrated, and how the results will bring better resolution to the decision objectives. These 

determinations should drive the requirements regarding what to collect. 

The fourth piece of decision-making is data, information, and knowledge. Notice that this 

part of decision-making contains more that just “data” in its traditional narrow sense. All 
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decisions incorporate more than just data: they also include the information and knowledge, i.e., 

expertise and theory, to do such things as understand the problem, structure the representations, 

find data sources, and select appropriate models. Even “data” in its narrower sense can include 

such things as opinions elicited from experts and outputs from computer codes. 

The fifth piece of decision-making, as shown in Figure 1, is the “information integration,” or 

the methodologies needed to tie all of the decision objectives, community representations, and 

information together. If these methodologies are effective, they lead to the sixth piece of 

decision-making, which is inference (with associated uncertainties) about the decision objectives 

of interest. This inference must be dynamic, or performed over time, because the data, 

information, and knowledge (including the problem representation) about the problem change 

continuously. 

The general decision-making structure of Figure 1 leads nicely to a formalization of the 

statistical problem-solving processes used to approach complex problems. An example used in 

the development of an automotive system is diagrammed in Figure 2. Here the primary decisions 

were guided by various performance metrics, e.g., the predicted design reliability of the system 

and the expected number of failures per thousand units produced. The tasks enumerated in 

Figure 2 use a statistician’s language to describe the general ideas in Figure 1. Each task has a 

body of research behind it; in particular, statisticians are the most familiar with calculating 

performance (inference) and performing “what-if” (predictive) analysis. The remainder of this 

paper will focus on surveying techniques useful for one of the less familiar boxes; specifically on 

statistical methods for structuring the system and representing data, information, and knowledge. 
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More information about creating knowledge bases can be found in Meyer and Paton (2000). 

Additional information about the elicitation and quantification of expert judgment can be found 

in Meyer and Booker (1991). 

 

2. AN ILLUSTRATIVE EXAMPLE 

The example that will be used to demonstrate the statistical methods for problem structuring 

and data representation is one of current intense interest within the Department of Defense 

(DoD). Fratricide, the injuring or killing of one’s own troops with friendly fire, became a timely 

issue during the Gulf War, “where most ground units’ only combat ID capability was an inverted 

V taped to their sides” (Carroll 1999). Some estimates put the Gulf War friendly-fire casualty 

rate at 25%; historical rates are about 15%. 

Fratricide is usually associated with a failure of identification-friend-or-foe (IFF), also known 

as combat ID. The purpose of combat ID is to correctly put potential targets into one of three 

categories: friendly, hostile, or unknown. Once a target is categorized, the rules of engagement 

determine whether a shot should be taken. For example, in U.S. Army air defense, a weapons 

control status of “hold” means do not shoot at anyone; a weapons control status of “tight” means 

shoot only hostiles; a weapons control status of “free” means shoot hostiles and unknowns. 

Clearly, one would like to be correctly identified as friendly by one’s own troops. 

Most of the recent discussion of combat ID has been technological, although, as the above 

discussion points out, there are also command and control issues involved. One standard method 

for combat ID is using the interrogation/response (or “What’s the password?”) model: if an 

interrogation signal is sent out and the target responds correctly (often using a transponder), it is 

classified as friendly, if it responds incorrectly, it is classified as hostile, or, if there is no 
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response, it is classified as unknown. It is the “no response” case that causes problems: the target 

could be friendly, with a broken transponder, or it could be hostile, with its transponder turned 

off to avoid making an incorrect response. 

Another newer method for combat ID is the “situational awareness” (SA) model. The upper 

echelons of military command have always tried to keep track of where their troops are with 

respect to the enemy. Modern technology has enhanced this ability through real-time battlefield 

communications systems like EPLRS, the enhanced position location and reporting system. 

However, the real future of SA comes from systems like FBCB2 (Force XXI Battle Command 

Brigade and Below), which promises to give each unit, and perhaps each soldier, the ability to 

display on a portable device all known friendly and hostile forces on a battlefield. This is 

accomplished using a combination of EPLRS and portable lightweight GPS receivers (PLGRs) 

to locate each soldier. 

The effectiveness and reliability of combat ID systems is a dynamic and important problem 

for the DoD, and will be used as the illustrative example in the discussion that follows. 

 

3. THE GENERAL PROBLEM 

One example of a formal statistical process for approaching complex problems is 

diagrammed in Figure 2. Assume that some care has been taken in deciding what decision is to 

be made and what measures of performance (metrics) need to be estimated to inform that 

decision. The next step in the process is the creation of several representations of the “system” 

under study. These representations should: 

1. capture all of the factors that affect the measures of performance;  

2. outline the components and subsystems of the larger “system” and how they interact;  
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3. identify the information that feeds into the estimation of the metrics; and  

4. specify the methods for “rolling-up” the information and quantifying uncertainty about 

the metrics.  

This process of specifying representations operates very much in terms of a “structural” 

versus a “predictive” model. Often in statistics, models are created to allow prediction without 

trying to understand the causes underlying the predictions. Think about the standard plot in 

elementary regression analysis where height is plotted against weight. Weight is a good predictor 

of height, but it does not give any causal explanation of height. The representations created in 

this problem-solving process are geared toward capturing the factors and information that might 

lead to a causal understanding of the measures of performance. 

The general forms of the representations used by the information integration technologies 

have three parts: icons/pictures/diagrams, rules/statements, and abstract mathematics (Paton 

1994). Rules and statements are used when we have observable phenomena that have been 

characterized by “physical laws” or statistical relationships; abstract mathematics similarly 

captures “physical laws” about unobservable phenomena. Much of the following discussion 

concentrates on the diagrams, which are used to gain understanding about systems through 

metaphor and analogy. 

Paton (1994) suggests that “thinking in terms of systems is probably the major reasoning 

paradigm in the biological sciences.” Arguably, the “system” metaphor is applicable to many 

scientific problems outside the biological sciences. Paton (1994) discusses five systemic 

metaphors that re-appear throughout science: a circuit  (representing flow, transfer, conduit, 

network, pipeline); a machine (representing input-output, mechanism, purpose, control, balance); 

a text (representing context, theme, grammar, hierarchy, interpretation); an organism 
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(representing organized complexity, adaptability, reproduction, openness); an ecosystem 

(representing niche, competition, environment, distributed processes). Specifically, these 

metaphorical graphs are often used to represent the relationships between the system and its 

components: a chain of components (machine), a network of components (circuit), a hierarchy of 

components (text, organism), or a cluster of components (ecosystem). 

On the multi-disciplinary teams (with multiple communities of practice) that are often 

formed to develop information integration technology processes to address complex problems 

like fratricide or SBSS, many different metaphors like these will be used to help determine the 

ways in which the group understands the complex relationships of “the problem.” For example, 

do commanders think of the battlefield as a circuit, ecosystem, organism, text, machine, or 

something else? For each of these metaphors, there are diagrammatic forms that then can be used 

as templates to begin creating diagrams of the features and relationships of the problem. Some of 

these diagrams are used later as a starting point for the knowledge base, and others as planning 

tools for statistical analyses. For example, where are the data, information, and knowledge 

sources, and how do their relationships suggest ways to factor them into the analyses? The 

decision framework outlined in Figure 1 utilizes this multi-perspective information from the 

multiple communities of practice to produce more robust analyses. 

 

4. REPRESENTING SYSTEMS 

There are many types of diagrams that can be used to accomplish the four primary purposes 

of diagramming and representing the “system” under study. However, they share common 

features. The basic components of the diagrams are “boxes,” which represent where data, 
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information, and knowledge can be collected, and arcs/arrows/lines, which represent the 

information flow between boxes. 

Figure 3 is notional scratch net (Paton 1993, 1996) for the fratricide issue. “Scratch net” is 

the formal name for the informal picture that is often drawn to start understanding which factors 

are important for assessing the decision metrics. Scratch nets collect ideas around a central 

organizing question or issue. If interconnections are added between the peripheral “boxes” in a 

scratch net, then it becomes a factor complex. Scratch nets and factor complexes can be made 

more complicated by adding hierarchy and directed arrows. The scratch nets, scratch net factors, 

and more detailed representations of the factors will change over time. 

Moving from the identification of the factors influencing the “system” under study to 

representations that can be populated with data, information, and knowledge for the purpose of 

analysis draws in many types of representations. There are two types of diagrams familiar to 

statisticians that are useful for analysis: trees and networks. Trees have a much more limited 

structure than networks, with a rigid hierarchical structure and a fixed set of relationships along 

the arcs. Information flows only between parent and child nodes. Networks (also called graphs) 

can represent more relationships with a richer set of connectors and a more flexible set of 

allowable connections.  

4.1 Trees 

The basic tree model is the decision tree. At each node of a decision tree there is a question 

or event; arcs coming from each node correspond to the answers to the question or occurrence of 

an event. A specific kind of decision tree is the event tree. These have been commonly used to 

model accident scenarios. An initiating event is chosen, and then a possible sequence of events is 

selected. A tree with 2N branches is formed by assuming that each event happens/does not 
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happen. Impossible branches are pruned away. Figure 4 shows notional unpruned event tree (4a); 

the pruned tree (4b) captures some of the factors and their relationships from the scratch net 

(Figure 3). 

A fault tree is often used to determine the causes of an undesirable event. It is basically 

failure oriented. The undesirable event is put at the top of the tree, and intermediate events 

leading to the “top event” are branched off in their own boxes with lines connecting them. The 

lines contain the Boolean operators AND and OR. The AND operator requires all connected 

events to happen before the next event occurs; the OR operator requires one or more of the 

connected events to happen. Some fault trees use a somewhat richer class of operators, including 

an INHIBIT gate and an N-of-M gate. Figure 5 shows an example fault tree for the factors in the 

scratch net (Figure 3) that correspond to the reliability of interrogation/response (using a 

transponder). The top gate is an AND gate, and the bottom gate is an OR gate. 

Process trees are a generalization of fault trees. As used by Eisenhawer and Bott (1999), 

“For the class of undesired events . . . the tree describes alternative process paths and the 

phenomenological relationships among the discrete processes.” The gates try to capture the ideas 

of possibility, necessity, and causality. Possibility, necessity, and causality are all defined as 

metrics on [0,1]. Both fault trees and process trees can be evaluated numerically—the methods 

for fault trees are commonly known (see Lewis 1987); process trees are evaluated by making 

Boolean approximations to the possibility and necessity gates. 

Classification trees are decision trees that have been developed specifically to determine the 

group or class for an observation. Each node contains a decision rule that sends the observation 

down one branch; each “leaf” of the tree is labeled with a classification. Regression trees specify 

a piecewise polynomial fit at each leaf of a classification tree. 
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Tree structures can be useful for representing system components, information flow, or 

statistical analyses in particular problems. However, not all communities of practice are 

comfortable using tree structures. For example, in the SBSS problems, physicists cannot use fault 

tree structures because the representation is not rich enough to capture how the physics processes 

relate on a continuous scale and interact with multiple subsystems and components of the nuclear 

weapon. Network representations, discussed in the next section, are more suitable for their needs. 

4.2 Networks and Graphs 

Networks and graphs have a more general structure than trees, in that the intermediate nodes 

can be connected to each other. Two of the most familiar graph representations are reliability 

graphs and reliability block diagrams. Reliability graphs and block diagrams, as their names 

suggest, are used to model system reliability by capturing either the physical interconnection of 

parts (usually called the reliability graph) or system failure dependencies (usually the reliability 

block diagram or success graph). Reliability graphs and block diagrams contain much of the 

same information as fault trees, but they are typically success oriented. The series graphs model 

the AND gate; the parallel graphs model the OR gate. Non-series and non-parallel connections 

are also used. Figure 6 shows a sample reliability block diagram for the situational 

awareness/FBCB2 factor in the scratch net (Figure 3). The first box contains parallel 

subcomponents; the second contains serial components. 

Markov models, or state-transition graphs, are used to capture the proportion of time that a 

system spends in a particular state. In reliability terms, states are defined as combinations of 

operating and failed components; in software testing, the states are conditions of system use 

(Poore and Trammell 1998). Sometimes the events are further classified as those that are 

“successes” and those that are “failures.” Directed arcs connect the states, and transition 
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probabilities between the states are assigned to each arc. The usual use for these models is to 

estimate the proportion of time spent in each state, or perhaps a collection of states. See Figure 7 

for an example that depicts a formal connection between the factors in the scratch net (Figure 3). 

Bayesian graphical modeling tries to bring together four statistical ideas (Spiegelhalter 

1998): 

1. extensions of generalized linear models to accommodate more complex dependence 

structures;  

2. Bayesian methods to build probability models and then base inferences on the conditional 

probability of the quantity of interest given the observed data; 

3. Markov chain Monte Carlo computational techniques; 

4. pictorial representations of the qualitative conditional independence assumptions 

underlying a model. 

The pictorial representations serve three functions: they are an accessible description of the 

statistical model, they make it easy to get formal conditional independence statements, and they 

provide a direct link with computational solutions through MCMC methods. 

Formally, Bayesian graphical models are directed acyclic graphs. The nodes are discrete or 

continuous random variables, and the arrows between nodes represent conditional dependence. 

Any node is conditionally independent of all of its non-descendants given its parents. This 

relationship allows the graph to be used as a “theorem prover” for conditional independence 

between random variables, and it greatly simplifies the implementation of MCMC techniques. 

Indeed, these are the representation’s primary strengths. Bayesian graphical models are often 

known as Bayesian networks when they are used to estimate the probabilities of unobserved 
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quantities conditional on observed or hypothesized quantities. Figure 7, without the probabilities 

associated with the arcs, is a sample Bayesian graphical model. 

Influence diagrams are commonly used in decision analysis, and share many features with 

Bayesian graphical models. The arrows between “chance” nodes (random variables, represented 

by circles) also represent conditional dependence. There are several other types of nodes in 

influence diagrams: decision nodes (represented by rectangles), deterministic nodes representing 

mathematical relationships (represented by double circles), and value nodes (represented by 

diamonds), which represent the quantity to be optimized. Arrows entering decision nodes 

represent information available to inform the decision at that node. See Figure 8 for an example. 

In Figure 8, the decision of interest is whether or not to engage a target. There are values 

assigned to each combination of engaging the target and combat ID (e.g., engage + hostile is 

“very good,” engage + friendly is “very bad,” not engage + friendly is “good,” not engage + 

hostile = “bad”). Depending on the values and risk preference, the diagram helps guide what 

decision should be made about engaging the target. 

As with the tree-based models, network models can be effectively used to represent system 

components, information flow, or statistical analyses in particular problems. Smith (1990) 

identifies three purposes of network models:  

1. efficient propagation of probabilities;  

2. help in eliciting model structure and the relationships between variables from clients; and  

3. help in understanding by the analyst/statistician the model’s structure.  

With respect to the second purpose, he states, “In this way models can be adjusted and elaborated 

without needing to confront a client with numerical evaluations of uncertainty (e.g., 

probabilities) early in the analysis—a process about which many clients harbor great suspicion.” 
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This is an important observation—the client and the analyst must both have a representation that 

they are comfortable thinking about. 

5. COMBINING DIAGRAMS 

As discussed above, icons/pictures/diagrams are only one way, although a very important 

way, that system structure can be represented. Other tools include if-then relationships, 

functional relationships, failure modes and effects analysis, and any of the other statistical 

models (e.g., linear, generalized linear, hierarchical, reliability, competing hypotheses) that are 

commonly used. The diagrammatic representation of statistical models is powerful in explaining 

what has to be done to implement the information integration technologies. Specifically, data, 

information, and knowledge has to be collected, in whatever form, at each box, and then the 

relationships between the boxes, probabilistic or otherwise, must be accounted for as estimates 

and uncertainties are propagated. 

In attempting to represent a system, often many different diagrams are drawn. This may be 

because the members of a multi-disciplinary team draw different pictures to represent the 

different ways they think about the problem, or it may be because different parts of the system 

are better or more easily represented in different ways. In the integration process, it is 

constructive to combine these different representations into a single diagram, not forcing it into 

the structure of a specific diagram type, but integrating the different representations into a 

complex diagram that captures the unique features, relationships, and information flows in the 

system under study. Figure 9 is a notional example of how some of the fratricide diagrams might 

be integrated into a more complex representation. 
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6. REPRESENTING DATA 

There are many types of data that can be used to populate the boxes/nodes in the system 

representation: expert judgment, historical test data, data from similar or relevant systems, design 

specifications, computer simulation model outputs, physical test data. Each type of data and 

information has natural ways that it can be represented (see Keller-McNulty and McNulty 2000). 

These include graphs (like histograms, boxplots, and scatterplots), tables, mathematical models, 

probability distribution functions, and fuzzy distributions and membership functions. 

  To do mathematically rigorous information integration, all of the system representations 

and data representations must be collected and then turned into probability distributions, 

probabilistic dependency relationships, and statistical models. These models and distributions 

may not be parametric, but they must somehow be in the language of distributions, 

dependencies, correlations, conditional independences, and statistical models of various forms. 

The formal methods for converting the diverse representations of systems and data into statistical 

models are the subjects of other papers. 
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Figure 1. Information Integration Technology Framework 
 
 

 
 

Figure 2. Sample Problem-Solving Process 
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Figure 3. Fratracide Scratch Net 
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Figure 4. Event Trees 
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Figure 5. Fault Tree 
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Figure 6. Reliability Block Diagram
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Figure 7. State Transition Graph 
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Figure 8. Influence Diagram
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Figure 9. Complex Representation 


